Subscribe to RSS

Stiinta back to homepage

Misterele gravitatiei Misterele gravitatiei(0)

Misterele gravitatiei

Gravitația este, probabil, cea mai cunoscută dintre cele patru forțe fundamentale. Aceasta ne influențează în fiecare moment al vieții noastre și pare și cel mai ușor de înțeles. La un nivel de bază este forța care permite Soarelui să mențină planetele pe orbitele lor și forța care ne ține pe Pământ. Însă, simplitatea aparentă a gravitației ascunde un fenomen profund, subtil și complex.

Când Newton a propus modelul său de gravitație universală, a fost extrem de criticat. Cum poate Luna „să detecteze” prezența Pământului și „să știe” că va fi trasă într-o anumită direcție? Totuși, din moment ce modelul lui Newton a fost atât de precis realizat, problema de acțiune-la-distanță a fost în mare parte dată uitării, asta pentru oamenii de știință din acele vremuri nu au reușit să-l deslușească pe deplin. Indiferent de modul prin care masele ajung să se influenţeze reciproc, pe baza modelului lui Newton se putea calcula mișcarea acestora. O altă dificultate a ajuns să fie problema cu 3 corpuri. Calculul mișcării gravitaționale a oricăror două mase a simplu, dar mișcarea a trei sau mai multe mase a fost imposibil de calculat exact în acea vreme.

La începutul anilor 1900 s-a constatat că de fapt gravitaţia nu este o forță. În modelul lui Einstein, gravitaţia nu este o forță, ci mai degrabă o deformare a spațiului-timp. Practic, masa îi spune spațiului cum să se curbeze, iar spațiul îi spune masei cum să se deplaseze. Relativitatea generală nu este doar un truc matematic pentru a calcula, în mod corect, forța gravitaţională cu care interacţionează obiectele. Aceasta face predicții unice cu privire la comportamentul luminii și materiei, care sunt diferite de predicţiile bazate pe ideea că gravitaţia este o forţă. Într-adevăr spațiul se curbează și, în consecinţă, obiectele sunt deviate şi nu mai urmează o traiectorie dreaptă, ca şi cum asupra lor ar acţiona o forță.

Astăzi, putem descrie cu exactitate mișcările stelelor și ale planetelor. Problema apare atunci când dorim să descriem obiecte mici cu gravitație puternică, cum ar fi cele mai vechi momente ale Big Bang-ului. Fără o teorie completă a gravitației cuantice nu vom înțelege pe deplin primele momente ale Universului. Știm din observații că Universul timpuriu a fost foarte mic și foarte dens. Conform relativităţii generale acest lucru însemnă că Universul a început ca o singularitate. Cu toate acestea, cei mai multe cosmologi nu cred că Universul a început ca o singularitate, dar fără o teorie a gravitației cuantice nu putem fi siguri.

Constanța cosmologică este în acord cu ceea ce observăm, dar există și alte modele teoretice pentru energia întunecată care respectă datele observaţionale. În cazul în care energia întunecată se datorează într-adevăr constantei cosmologice, atunci constanta trebuie să aibă o valoare foarte apropiată de zero, de aproximativ 10^-122. De ce ar avea o constantă o valoare atât de apropiată de zero? De ce ar exista această constantă dacă relativitatea generală nu o impune? Încă nu știm aceste lucruri…

 

Abonare

Enter your email address:

Delivered by FeedBurner

Contacts and information

Social networks

Most popular categories

Buy This Theme
© 2011 Gadgetine Wordpress theme by orange-themes.com All rights reserved.